Gnarus Systems

 
Image description

References

REFERENCES

1.         Benfenati, E. and G. Gini (1997) Computational predictive programs (expert systems) in toxicology.  Toxicology, 119: 213-225.

2.         Hansch, C. and T. Fujita (1964)  p-s-p Analysis.  A method for the correlation of biological activity and chemical structure.  Journal of the American Chemical Society, 86: 1616-1626.

3.         Klopman, G. (1984) Artificial intelligence approach to structure-activity studies.  Computer automated structure evaluation of biological activity of organic molecules.  Journal of the American Chemical Society, 106: 7315-7321.

4.         Klopman, G. (1992) MULTICASE 1. A hierarchical computer automated structure evaluation program.  Quantitative Structure-Activity Relationships, 11: 176-184.

5.         Cunningham, A.R., H.S. Rosenkranz, Y.P. Zhang, and G. Klopman (1998) Identification of “genotoxic” and “non-genotoxic” alerts for cancer in mice:  The carcinogenic potency database.  Mutation Research, 398: 1-17.

6.         Cunningham, A.R., H.S. Rosenkranz, and G. Klopman (1998) Identification of structural features and associated mechanisms of action for carcinogens in rats.  Mutation Research, 405: 9-28.

7.         Miller, J.A. and E.C. Miller (1977) Ultimate chemical carcinogens as reactive mutagenic electrophiles.  In Origins of Human Cancer, H.H. Hiatt, J.D. Watson, and J.A. Winsten, Editors, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York. p. 605-627.

8.         Contrera, J.F., N.L. Kruhlak, E.J. Matthews, and R.D. Benz (2007) Comparison of MC4PC and MDL-QSAR rodent carcinogenicity predictions and the enhancement of predictive performance by combining QSAR models.  Regulatory Toxicology and Pharmacology, 49(3): 172-182.

9.         McKinney, J.D., A. Richard, C. Waller, M.C. Newman, and F. Gerberick (2000) The Practice of Structure Activity Relationships (SAR) in Toxicology.  Toxicological Sciences, 56(1): 8-17.

10.       Richard, A.M. (1998) Commercial toxicology prediction systems: a regulatory perspective.  Toxicology Letters, 102-103: 611-616.

11.       Richard, A.M. (1999) Application of artificial intelligence and computer-based methods to predicting chemical toxicity.  The Knowledge Engineering Review, 14: 307-317.

12.       Cunningham, A.R., S.L. Cunningham, D.M. Consoer, S.T. Moss, and M.H. Karol (2005) Development of an information-intensive structure- activity relationship model and its application to human respiratory chemical sensitizers.  SAR and QSAR in Environmental Research, 16(3): 273-285.

13.       Cunningham, A.R., D.M. Consoer, S.A. Iype, and S.L. Cunningham (In press) A structure-activity relationship analysis for the identification of environmental estrogens:  The categorical-SAR (cat-SAR) approach.  In Endocrine Disruption Modeling, J. Devillers, Editor, CRC Press.

14.       Cunningham, A.R., S.T. Moss, S.A. Iype, G. Qian, S. Qamar, and S.L. Cunningham (2008) Structure-activity relationship analysis of rat mammary carcinogens.  Chemical Research in Toxicology, 21: 1970-1982.

15.       Rall, D.P., M.D. Hogan, J.E. Huff, B.A. Schwetz, and R.W. Tennant (1987) Alternatives to using human experience in assessing health risk.  Annual Review of Public Health, 8: 355-385.

16.       Maronpot, R.R., G. Flake, and J. Huff (2004) Relevance of animal carcinogenesis findings to human cancer predictions and prevention.  Toxicologic Pathology, 32: 40-48.

17.       Huff, J. (1994) Chemicals causally associated with cancer in humans and in laboratory animals.  In Carcinogenesis, M.P. Waalkes and J.M. Ward, Editors, Raven Press, Ltd.: New York. p. 25-37.

18.       NIEHS (1996) Scientists Try to Match Rodent Results in Testing Chemicals.  http://www.niehs.nih.gov/news/releases/1996/bristol.cfm, last accessed 11/07/07.

19.       NTP (2007) Long-Term Study Reports & Abstracts http://ntp.niehs.nih.gov/ntpweb/index.cfm?objectid=7DA86165-BDB5-82F8-F7E4FB36737253D5, last accessed 11/12/07.

20.       Gold, L.S., T.H. Slone, and B.N. Ames (1997) Overview and update of analyses of the carcinogenic potency database.  In Handbook of Carcinogenic Potency and Genotoxicity Databases, L.S. Gold and E. Zeiger, Editors, CRC Press: New York. p. 661-693.

21.       CPDB (2007) Carcinogenic Potency Database.  http://potency.berkeley.edu, last accessed 4/12/07.

22.       DSSTox (2007) Distributed Structure-Searchable Toxicity (DSSTox) Database Network http://www.epa.gov/NCCT/dsstox/index.html, last accessed 10/30/07.

23.       EPA (2007) What is the TSCA Chemical Substance Inventory?  http://www.epa.gov/oppt/newchems/pubs/invntory.htm, last accessed 11/07/07.

24.       NIEHS (2005) About the NTP.  http://ntp-server.niehs.nih.gov/index.cfm?objectid=7201637B-BDB7-CEBA-F57E39896A08F1BB, last accessed 11/07/07.

25.       ECHA. ECHA Press Release.  2009  [cited; Available from: http://echa.europa.eu/doc/press/pr_08_54_end_of_%20preregistration_20081202.pdf].

26.       Cronin, M.T.D., J.S. Jaworska, J.D. Walker, M.H.I. Comber, C.D. Watts, and A.P. Worth (2003) Use of quantitative structure-activity relationships in international decision-making frameworks to predict health effects of chemical substances.  Environmental Health Perspectives, 111: 1376-1390.

27.       Cronin, M.T.D., J.D. Walker, J.S. Jaworska, M.H.I. Comber, C.D. Watts, and A.P. Worth (2003) Use of quantitative structure-activity relationships in international decision-making frameworks to predict ecological effects and environmental fate of chemical substances.  Environmental Health Perspectives, 111: 1376-1390.

28.       Matthews, E. and J. Contrera (1998) A New Highly Specific Method for Predicting the Carcinogenic Potential of Pharmaceuticals i rodents Using Enhanced MCASE QSAR-ES Software.  Regulatory Toxicology & Pharmacology, 28: 242-264.

29.       Matthews, E.J., N.L. Kruhlak, M.C. Cimino, R.D. Benz, and J.F. Contrera (2006) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints.  Regulatory Toxicology and Pharmacology, 44(2): 83-96.

30.       EPA-NCCT. National Center for Computational Toxicology.  2009  [cited; Available from: http://www.epa.gov/NCCT/].

31.       Gold, L.S., N.B. Manley, T.H. Slone, and J.M. Ward (2001) Compendium of chemical carcinogens by target organ:  Results of chronic bioassays in rats, mice, hamsters, dogs, and monkeys.  Toxicologic Pathology, 29: 639-652.

32.       Rosenkranz, H.S. and G. Klopman (1990) The structural basis of the mutagenicity of chemicals in Salmonella typhimurium:  The National Toxicology Program data base.  Mutation Research, 228: 1-50.

33.       Ghanooni, M., D.R. Mattison, Y.P. Zhang, O.T. Macina, H.S. Rosenkranz, and G. Klopman (1997) Structural determinants associated with risk of human developmental toxicity.  American Journal of Obstetrics and Gynecology, 176: 799-806.

34.       Graham, C., R. Gealy, O.T. Macina, M.H. Karol, and H.S. Rosenkranz (1996) QSAR for allergic contact dermatitis.  Quantitative Structure-Activity Relationships, 15: 224-229.

35.       Li, Y., D. Pan, J. Liu, P.S. Kern, G.F. Gerberick, A.J. Hopfinger, and Y.J. Tseng (2007) Categorical QSAR Models for Skin Sensitization based upon Local Lymph Node Assay Classification Measures Part 2: 4D-Fingerprint Three-State and Two-2-State Logistic Regression Models.  Toxicological Sciences, 99(2): 532-544.

36.       Li, Y., Y.J. Tseng, D. Pan, J. Liu, P.S. Kern, G.F. Gerberick, and A.J. Hopfinger (2007) 4D-Fingerprint Categorical QSAR Models for Skin Sensitization Based on the Classification of Local Lymph Node Assay Measures.  Chemical Research in Toxicology, 20(1): 114-128.

37.       Rosenkranz, H.S., Y.P. Zhang, and G. Klopman (1999) The development and characterization of an SAR model of the Draize eye irritation test.  Alternatives to Laboratory Animals, 20: 779-809.

38.       Soto, A.M., C. Sonnenschein, K.L. Chung, M.F. Fernandez, N. Olea, and F.O. Serrano (1995) The E-SCREEN assay as a tool to identify estrogens: An update on estrogenic environmental pollutants.  Environmental Health Perspectives, 103(Suppl7): 113-122.

39.       Cunningham, A.R., S.L. Cunningham, and H.R. Rosenkranz (2004) Structure activity approach to the identification of environmental estrogens: The MCASE approach.  SAR and QSAR in Environmental Research, 15(1): 55-67.

40.       Cunningham, A.R., D.M. Consoer, S.A. Iype, and S.L. Cunningham (2009) A structure-activity relationship analysis for the identification of environmental estrogens:  The categorical-SAR (cat-SAR) approach.  In Endocrine Disruption Modeling, J. Devillers, Editor, CRC Press.

41.       Cunningham, A.R., S.L. Cunningham, and B.W. Day (2003) Identification of structural components associated with cytostatic activity in MCF-7 but not in MDA-MB-231 cells.  Bioorganic and Medicinal Chemistry, 11: 5249-5258.

42.       Haseman, J.K. and F.M. Johnson (1996) Analysis of rodent NTP bioassay data for anticarcinogenic effects.  Mutation Research, 350: 131-141.

43.       Piegorsrch, W.W. and E. Zeiger (1991) Measuring Intra-assay Agreement for the Ames Salmonella Assay.  In Statistical Methods in Toxicology, L. Hotham, Editor, Springer-Verlag: Heidlberg. p. 35-41.

44.       Gold, L.S., C. Wright, L. Bernstein, and M. deVeciana (1987) Reproducibility of results in near-replicate carcinogenesis bioassay.  Journal of the National Cancer Institute, 78: 1149-1158.

45.       Cabello, G., M. Valenzuela, A. Vilaxa, V. Durán, I. Rudolph, N. Hrepic, and G. Calaf (2001) A rat mammary tumor model induced by the organophosphorous pesticides parathion and malathion, possibly through acetylcholinesterase inhibition.  Environmental Health Perspectives, 109(5): 471-479.

 
 
Image description

Consulting Service

Gnarus Systems offers predictive toxicological assessment of chemicals, SAR model development, and virtual screening on an ad hoc basis.

Direct Access

For larger projects, Gnarus Systems can provide users with secure cloud-based access to the cat-SAR expert system along with validated predictive models.

Complete System

Similar to "Direct Access" with the added advantage that users can update/alter exisitng models as well as produce models with user specific data. In this case, users can develop, validate, and use models based on private or proprietary data.